Probability and Mathematical Genetics:
Papers in Honour of Sir John Kingman

BookCover

The book was published by Cambridge University Press in the London Mathematical Society Lecture Notes Series in July 2010.

ISBN-13: 9780521145770

For price information, and to order, visit the book’s webpage at Cambridge University Press.

Contents, vii-xii

  • List of contributors, xiii-xiv
  • Preface, xv-xvii
  • Bibliography of J. F. C. Kingman, 1-16. [.pdf] [.tex] [.bib] [Bibserver]
    1. A fragment of autobiography, 1957–1967, 17-34.
      J. F. C. Kingman
    2. More uses of exchangeability: representations of complex random structures, 35-63.
      David J. Aldous. arXiv:math.PR/0909.4339
    3. Perfect simulation using dominated coupling from the past with application to area-interaction point processes and wavelet thresholding, 64-90.
      G. K. Ambler and B. W. Silverman.  arXiv:stat.ME/1003.0243
    4. Assessing molecular variability in cancer genomes, 91-112.
      A. D. Barbour and S. Tavaré. arXiv:q-bio.PE/1004.4116
    5. Branching out, 113-134.
      J. D. Biggins. arXiv:math.PR/1003.4715
    6. Kingman, category and combinatorics, 135-168.
      N. H. Bingham and A. J. Ostaszewski. arXiv:math.CA/1003.4673
    7. Long-range dependence in a Cox process directed by an alternating renewal process, 169-184.
      D. J. Daley
    8. Kernel methods and minimum contrast estimators for empirical deconvolution, 185-203.
      Aurore Delaigle and Peter Hall.  arXiv:stat.ME/1003.0315
    9. The coalescent and its descendants, 204-237.
      Peter Donnelly and Stephen Leslie. arXiv:stat.ME/1006.1514
    10. Kingman and mathematical population genetics, 238-263.
      Warren J. Ewens and Geoffrey A. Watterson. arXiv:math.PR/1005.4601
    11. Characterizations of exchangeable partitions and random discrete distributions by deletion properties, 264-298.
      Alexander Gnedin, Chris Haulk and Jim Pitman.  arXiv:math.PR/0909.3642
    12. Applying coupon-collecting theory to computer-aided assessments, 299-318.
      C. M. Goldie, R. Cornish and C. L. Robinson. arXiv:math.PR/1002.2114
    13. Colouring and breaking sticks: random distributions and heterogeneous clustering, 319-344.
      Peter J. Green.  arXiv:stat.ME/1003.3988
    14. The associated random walk and martingales in random walks with stationary increments, 345-357.
      D. R. Grey. arXiv:math.PR/1006.4465
    15. Diffusion processes and coalescent trees, 358-379.
      R. C. Griffiths and D. Spanó.  arXiv:stat.ME/1003.4650
    16. Three problems for the clairvoyant demon, 380-396.
      Geoffrey Grimmett. arXiv:math.PR/0903.4749
    17. Homogenization for advection-diffusion in a perforated domain, 397-415.
      P. H. Haynes, V. H. Hoang, J. R. Norris and K. C. Zygalakis.  arXiv:math.PR/1003.3990
    18. Heavy traffic on a controlled motorway, 416-445.
      F. P. Kelly and R. J. Williams. arXiv:math.PR/1002.4591
    19. Coupling time distribution asymptotics for some couplings of the Lévy stochastic area, 446-463.
      W. S. Kendall. arXiv:math.PR/1002.4348
    20. Queueing with neighbours, 464-482.
      V. Shcherbakov and S. Volkov. arXiv:math.PR/0907.1826
    21. Optimal information feed, 483-490.
      P. Whittle
    22. A dynamical-system picture of a simple branching-process phase transition, 491-508.
      David Williams. arXiv:math.PR/1011.6513

    Index, 509-528

    Focussing on the work of Sir John Kingman, one of the world's leading figures in probability and mathematical genetics, this book touches on many important topics from 50 years of research.  Leading authorities give a unique insight into a wide range of currently topical problems. Papers in probability concentrate on combinatorial and structural aspects, in particular exchangeability and regeneration.  The Kingman coalescent links probability with mathematical genetics and is fundamental to the study of the latter.  This has implications across the whole of genomic modelling, including the Human Genome Project. Other papers in mathematical population genetics range from statistical aspects, including heterogeneous clustering, to the assessment of molecular variability in cancer genomes. Further papers in statistics are concerned with empirical deconvolution, perfect simulation, and wavelets. The book will be warmly received by established experts as well as their students and others interested in the content.

    Website maintained by Charles Goldie (C.M.Goldie at sussex.ac.uk)